
Half&Half: Demystifying Intel’s Directional Branch Predictors
for Fast, Secure Partitioned Execution

Hosein Yavarzadeh∗, Mohammadkazem Taram†, Shravan Narayan∗,§, Deian Stefan∗, and Dean Tullsen∗

∗University of California San Diego, †Purdue University, §University of Texas at Austin

Abstract—This paper presents Half&Half, a novel soft-
ware defense against branch-based side-channel attacks.
Half&Half isolates the effects of different protection do-
mains on the conditional branch predictors (CBPs) in
modern Intel processors. This work presents the first
exhaustive analysis of modern conditional branch prediction
structures, and reveals for the first time an unknown
opportunity to physically partition all CBP structures and
completely prevent leakage between two domains using the
shared predictor. Half&Half is a software-only solution to
branch predictor isolation that requires no changes to the
hardware or ISA, and only requires minor modifications
to be supported in existing compilers. We implement
Half&Half in the LLVM and WebAssembly compilers and
show that it incurs an order of magnitude lower overhead
compared to the current state-of-the-art branch-based side-
channel defenses.

1. Introduction
Isolation is a fundamental goal of any secure multi-user
system, providing assurance that one domain is in no way
influenced by the actions of another. We want the user to be
isolated from the kernel, co-running processes (including on
a simultaneous multithreaded processor) to be isolated from
each other, VMs to be isolated, sandboxed code to be isolated
from the host program that runs this sandboxed code, etc.
While significant advances have been made in software and
language based isolation, recent disclosures have illustrated
that it is not possible to fully provide isolation without
isolating microarchitectural structures [47], [54].

The primary forms of isolation we want to guarantee are
memory isolation and control flow isolation, i.e., memory
accesses and control flow paths in one domain should
not leak information to, or be maliciously influenced by,
another domain. Memory isolation has been well studied
and supported at both the software and hardware level;
for example, operating systems ensure memory isolation
between different processes using virtual memory and page
table entries that are either flushed between processes or
tagged with process IDs, and processors even have hardware
support to isolate cache lines [64].

In contrast, control flow isolation has only very limited
support, and as a consequence has been the target of many
attacks. For example, the branch prediction based informa-
tion leakage has been exploited to recover the encryption
key from the RSA algorithm [10], [11], [12] and to break
Address Space Layout Randomization (ASLR) [26]. More

recently, Spectre attacks [21], [47], [17] have demonstrated
how an attacker process can infer or manipulate a victim
process’ control flow during speculative execution in order
to disclose memory of this victim process. Preventing
such attacks requires robust control flow isolation at the
hardware level.

Control flow isolation on modern CPUs typically in-
volves isolating two structures: the Branch Target Buffer
(BTB) and the Conditional Branch Predictor (CBP), however,
much of the existing practical defenses have been geared
towards the BTB. The BTB for instance can be directly
flushed by software, which allows partitioning of the BTB
in time (rather than in space). Alternately, the BTB can be
bypassed altogether for security sensitive programs [89].
Unfortunately, similar mechanisms to partition the CBP do
not exist. One of the reasons for this is the sheer complexity
of the CBP predictors used in real CPUs. As a consequence,
existing software control flow isolation defenses opt to
forego the use of the CBP altogether, either eliminating
branches [15], [20] or forcing all control flow to go through
indirect branches, at high performance cost [51], [62].

At its core, CBP isolation has been challenging for two
reasons. First, commercial CPU vendors are notoriously
secretive about their predictors, therefore, reverse engineer-
ing those structures is difficult; indeed, no prior work has
successfully identified all the key predictor structures in
recent advanced CPUs. Second, the indexing functions used
in the internals of this complex predictor involves hundreds
of bits of information folded together; this makes it nearly
impossible to track and control all the ways these bits affect
predictions from the CBP.

Despite these challenges, we demonstrate that it is
in fact possible to automatically partition the CBP in
today’s CPUs, completely in software, with minimal per-
formance impact. Our approach incurs more than an order
of magnitude lesser overhead than other state-of-the-art
defenses. This result is enabled by a comprehensive reverse
engineering of the branch predictors on three high-end
Intel processor families, revealing for the first time the
structures and index functions of all tables in the predictor.
Our analysis reveals the unexpected result that despite
hundreds of bits used to index the branch prediction tables
in these processors, a single bit of the branch address is
used without modification as an independent bit of the
index function of every table in the predictor. Thus, two

1204

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Hosein Yavarzadeh. Under license to IEEE.
DOI 10.1109/SP46215.2023.00134

branches that differ in this single bit can never influence
each other. By partitioning the branch predictor on this bit,
we can prevent side channel attacks on the CBP [25], [27],
[28], [36] and prevent malicious mistraining of the CBP
required by transient execution attacks [46], [47].

One limitation of our approach is that while we can
partition the CBP into two isolated domains, further parti-
tioning becomes prohibitively expensive. Nevertheless, we
believe this two-domain partitioning is still useful in many
scenarios. We can, for example, partition the CBP between
userspace code and kernel code, partition two threads run-
ning on simultaneous multithreaded (SMT) cores, or even
partition the CBP between code from untrusted application
components and the remainder of the application.

We implement our CBP partitioning defense mechanism
on top of a general purpose compiler (LLVM) as well as
Swivel [62] – a WebAssembly compiler that sandboxes
untrusted code in applications so that it cannot be coerced
to corrupt or leak the memory contents from the trusted
code in these applications through memory safety attacks
or Spectre attacks.
Contributions. The contributions of this work are:
▶ We reveal, for the first time, a comprehensive picture

of the branch predictors in three of the most recent
families of Intel processors, including the size, structure,
and exact indexing function of each table.

▶ We propose Half&Half, a novel software-based defense
against CBP poisoning/aliasing attacks and against CBP
side channels.

▶ We implement our defense mechanism on top of a
general purpose compiler (LLVM) and show execution
overhead of 1.3%-6.8%.

▶ We implement Half&Half in a recent Spectre-hardened
WebAssembly compiler, Swivel, replacing their CBP
isolation mechanism with ours, and show an order of
magnitude reduction in overhead.

2. Background and Related Work
This section discusses relevant background information
and prior work. It first provides an overview of the known
state-of-the-art branch prediction structures used in modern
processors. It then discusses the most relevant research on
branch predictor-based attacks and mitigations.

2.1. Branch Prediction
All modern high-performance processors employ dynamic
branch prediction [83], [101], [44], [80], [77], [55], a crucial
performance optimization which allows them to maintain
high pipeline utilization. To continuously fetch and execute
instructions after the branch, the processor needs three
different predictions from the Branch Prediction Unit (BPU):
(1) whether or not the current instruction is a branch,
(2) whether the branch is taken or not, and (3) where
the target of the branch is. A BPU, therefore, typically
features different structures for these different predictions.
The Branch Target Buffer (BTB) identifies branches at fetch
time and predicts the target, while the Conditional Branch
Predictor (CBP) provides predictions for the direction of

branches (taken or not-taken). It should be noted that
predicting the targets of computed (or indirect) branches is
much more difficult than predicting static targets, therefore
that part of the BTB that predicts those target addresses is
often called the Indirect Branch Predictor (IBP).

Previous research has extensively studied the structure
of the BTB and the IBP and exposed BTB-based vulnerabili-
ties for various high performance processors from different
vendors including Intel [59], [91], [26], [35] and AMD [9],
[90], [106], [5]. However, the structure of the conditional
branch predictor in most modern processor designs is still
largely unknown.

2.2. Conditional Branch Prediction
Conditional branch predictors proposed in the literature
are mostly history-based predictors, i.e., they predict the
direction of branches based on previous outcomes [83],
[101], [44], [80], [77], [55]. The type of history that these
predictors use for each branch can be categorized as local
or global. The local history captures previous outcomes
of the same branch while the global history tracks the
outcome of any branch that the processor executes. A
simple local predictor is the bimodal, a table indexed by
low bits of the branch address and composed of two-bit
saturating counters [50], [55]. A high counter value predicts
the branch (at the address) to be taken, while a low value
predicts the converse; when the branch is actually resolved
as taken or not, the counter is incremented or decremented
respectively. A local predictor (including those that capture
patterns rather than just tendencies [101]) lacks sufficient
context to accurately predict many branches whose behavior
is influenced by the path the code took to reach the
branch (global history). These are called correlated branches,
and previous research [102], [67] shows they constitute a
significant portion of branches in many programs.

In practice, state-of-the-art predictors [80], [75], [77]
use a combination of both local and global histories. Global
predictors traditionally maintain a global history of past
(dynamic) branches in a shift-register called the Global
History Register (GHR). When the processor executes a
branch, it inserts the outcome of the branch into the GHR,
e.g., ‘0’ if it was non-taken and ‘1’ otherwise. This GHR
is used in various ways to index into the branch predictor
tables. The length of the GHR is a sensitive parameter,
as a small GHR fails to capture correlations between
branches more separated in the program flow, while a
large GHR creates a great deal of noise (for uncorrelated
branches) that obscures the few correlations that typically
matter. To address this problem, researchers have proposed
using multiple tables each indexed by different history
lengths [74], [79], [42], [43]. The O-GEHL predictor [73]
proposed using multiple tables indexed by history lengths
that form a geometric series, e.g., the first table uses the
history of the past 5 branches, the second table uses the
history of the past 10 branches, the third table uses the
history of the past 20 branches and so on.
TAGE In 2006, Seznec [80] proposed a predictor called
Tagged Geometric History Length Predictor, or TAGE. Similar

1205

to the O-GEHL predictor, TAGE uses geometric history
lengths. TAGE, however, relies on a hash of the global
history bits, combined with tags on table entries, to associate
counters with their global histories. Since its introduction,
variants of TAGE [80], [76], [77], [78] have won each branch
predictor championship [1], [2], [3], [4]. It is known that the
TAGE predictor has been implemented in many commercial
high-performance processors, e.g., IBM POWER9 [37] and
Phytium Mars [105], and due to its accuracy, it is likely
employed by other recent commercial high-performance
processors. Therefore, this section delves deeper into details
of the TAGE predictor.

TAGE (see Figure 1) features a base predictor (Table0)
alongside a set of tagged predictor components (Table1 to
Tablen). The base predictor is a table of 2-bit saturating
counters and is simply indexed with the branch address, i.e.,
the value of the Program Counter (PC) when the processor
fetches the branch. The tagged tables are indexed using
different hash functions of the branch address and the
history lengths. An entry in a tagged component consists
of a saturating counter which provides the prediction, but
it also has some metadata: (1) a tag value that indicates the
history to which this entry belongs, and (2) a usefulness
counter that is used for replacement decisions.

At prediction time, the TAGE predictor simultaneously
queries the base predictor and the tagged components. The
tagged components provide a prediction only on a tag
match, in other words, only if we observe a repeated history
for a branch. The overall prediction is provided by the
tagged predictor component that uses the longest history,
or in case of no matching tagged predictor component,
TAGE uses the prediction provided by the base predictor.

On a correct prediction, TAGE updates the prediction
counter. If the prediction was from a tagged component,
TAGE also updates the usefulness counter, indicating that
the entry has been useful, making it less likely to be
replaced. In case of a misprediction where the prediction
was provided by the base predictor, TAGE updates the
counters and allocates a new entry in the first tagged
component (Table1). In the more general case, TAGE tries
to allocate a new entry in Tablei+1 if the prediction from
Tablei is incorrect.

2.3. Branch-based Side-Channel Attacks
We broadly categorize branch based attacks into two
categories—attacks that can learn the control flow of an
isolated (victim) process, and transient execution attacks
that disclose the memory contents of a victim process by
leveraging branch mispredictions and speculative execution.

Control flow extraction attacks Prior work has demon-
strated a number of attacks on the branch prediction unit
by reverse engineering the internal BPU structures. For
instance, the first BPU attacks by Acıiçmez et al. [10],
[11], [12] targeted the BTB—the component that stores
branch targets for a limited number of indirect branches
in executing code. These attacks showed that a malicious
process could fill the limited BTB target entries with dummy
values to cause measurable timing differences in a victim

…

Ta
bl

e 1

Ba
se

 P
re

di
ct

or
 (T

ab
le

0)

PC GHR [0:L1]

Prediction

PC GHR [0:Ln]

Ta
bl

e n

…

Ta
bl

e 2

PC GHR [0:L2]

= ?

index tag

Mux

Mux

ctr utag ctr utag

tag

ctr

= ?

index

= ?

index tag

Mux

ctr utag

PC

Figure 1: Structure of the TAGE predictor. As proposed
in [80], a base predictor is backed with several
tagged predictor components (Table1...n) indexed by
the program counter (PC) and increasing geometric
history (GHR) lengths (L1 < L2 < · · · < Ln).

processes. This, in turn, allows the attacker process to
infer the control flow and secret data of the victim process.
Evtyushkin et al. [26] similarly used BTB collisions between
an unprivileged user space process and privileged kernel
space code to break the kernel’s ASLR. Lee et al. [51]
used BTB collisions to infer the control flow of programs
running in Intel SGX—a hardware extension that allows
secure isolated execution of programs.

BranchScope [28] expanded BPU attacks to target the
conditional branch predictor (CBP) by reverse engineering
a part of the CBP structure. They observed that the CBP
in modern Intel processors was a combination of a local
predictor that provides predictions based on the local
history, alongside a more complicated predictor that uses
global history. BranchScope works by executing many
random branches to force the CBP to use the local predictor,
and then induces collisions in the CBP entries (similar to
the BTB attacks). BranchScope, however, stopped short of
a full analysis of the CBP structure, especially the global
predictor, and how this may be used in real attacks as well
as practical defenses—we cover this in detail in Section 3.
Spectre v1 Recently, Spectre attacks [47] have shown that
leveraging CBP or BTB mispredictions in combination with
speculative execution can be used for attacks. At their core,
Spectre attacks work by leveraging branch mispredictions
to execute code that would leak sensitive data. Specifically,
they reverse engineer some structures of the indirect branch
predictor (target predictor) for Haswell architecture and
used this information to do drive spectre-btb attacks. In this
paper, we target the CBP which is a completely different
structure than the indirect branch predictor.

Listing 1 demonstrates how the out-of-place Spectre-
PHT attack [17] can be used to learn the memory contents
of a victim process. The attack starts with the attacker
process training the branch predictor to predict “Taken” on
a branch located at address 0x1234 in the attacker process.
When the victim process runs next, the branch predictor will
predict “Taken” on the branch in victim code (as the victim
branch has the the same address as the attacker process’

1206

void attacker_process(){
//Training branch predictor
for (i=0; i < INT_MAX; i++){
//Branch addr: 0x1234
if (TRUE);

}
}

void victim_process(){
//Branch addr: 0x1234
if (i < array1_size){
data = array1[i] * 4096;
y = array2[data];

}
}

Listing 1: Spectre-PHT gadget. A read from array2
loads data into the cache at an address dependent on
array1[input], using the attacker-controlled input.

branch), and speculatively execute the branch body even if
“i” is very large. This results in a speculative read gadget
which can read data from any memory location into the
variable data. This data can then be leaked either through
the data cache [87], [87], [98], [30] by leveraging a double
index gadget as shown, or via other covert channels [22],
[72], [16], [69]. Similar attacks are also possible across
the userspace and kernel boundary [84], and even across
different components of a single process [62].

Spectre attacks also have in-place variants [47], [46],
[21], where attackers invoke victim code with chosen inputs
so that the victim branch is trained in-place, i.e., without
relying on any collisions in BPU entries. While we mention
this for completeness, we consider these in-place attacks
beyond the scope of this paper; those attacks do not exploit
a contention/isolation based vulnerability.

2.4. Defenses Against Branch-based Attacks
Several defenses have been proposed to stop BPU attacks
targeting the CBP or BTB. While many of these BTB
defenses have proven effective, with some even being
deployed in practice [84], [38], the use of a general, high
performance, and backwards-compatible CBP defense has
remained elusive; we discuss this in more detail next.

The most general defense against contention-based side-
channel attacks is to partition the targeted unit between
different processes or domains [52], [99], [107], [85]. This
applies to general defenses against BPU attacks as well.
Prior work [107] has proposed hardware design changes
that implement this change, however, this design has not
yet seen mainstream adoption in commercial CPUs. Intel
has instead proposed targeted mitigations such as isolating
the branch prediction of hyperthreads [38], however, in
practice, this simply disables branch prediction in one
of the hyperthreads resulting in large overheads [23]. A
related but simpler defense, available in Intel CPUs as
an optional mitigation, is to simply flush the BTB state
when switching contexts [84]; however as we discuss in
Section 4.2, employing a similar flush for the CBP in CPUs
is challenging.

An alternate defense used by sensitive code such as
cryptographic libraries is constant-time programming [15],
[20]. This approach eliminates secret-dependent branches
from code by implementing algorithms as circuits. However,
this approach is not typically employed in general purpose
code due to the high overheads.
Spectre defenses Several defenses have been proposed to
specifically mitigate Spectre based attacks. These include
changes to CPU design to permit safe speculation [104],

[103], [95], [14], [53], limiting the effects of speculation
on structures such as the cache [97], [13], [70], [96], and
even limiting speculative execution when handling sensitive
data [86]. Additionally, many designs [32], [49], [71], [108],
[29], [63] have combined CPU design changes with software
provided hints to speed up enforcement of safe speculative
execution. These changes offer a path forward on the next
generation of CPU designs to prevent Spectre attacks at
the cost of some performance.

To address attacks on current hardware, CPU manu-
facturers and software vendors have turned to microcode
patches and software solutions. The core challenge with
these approaches is the security vs. performance trade-off;
the more secure options like microcode patches [82] or in-
serting fences in programs [58], [40], [94], [81] significantly
affect performance, while Spectre gadget finders [31], [66]
or targeted use of secure coding patterns (retpolines [89],
speculative load hardening [19], or artificial data dependen-
cies [65] near branches) are inherently incomplete defenses.

Spectre defenses have also been developed or adapted
for specific domains. For example, JavaScript engines in
browsers use speculative load hardening for memory opera-
tions on JavaScript arrays [24]. Swivel [62] proposes a code
pattern called linear blocks in combination with techniques
like BTB flushing, and speculative load hardening to secure
WebAssembly [33] — a technology that allows sandboxed
execution of untrusted code components in a process.

Our work proposes a new general-purpose, low-
overhead method of partitioning the CBP in existing CPUs.
By leveraging these partitions, we can prevent branch based
attacks targeting the CBP. In order to partition the CBP,
we start by conducting a series of experiments to uncover
the design and inner workings of the BPU in today’s CPUs.
We explain these experiments next.

3. In-Depth Analysis of Intel CBPs
This section details our in-depth study of Intel’s conditional
branch predictors and the techniques and the microbench-
marks used to uncover their internal structures. The goal is
to discover if it is possible to find a set of transformations
that would partition the CBP to provide secure isolation. To
do that, we need to know the structure and indexing/access
functions for each table in the predictor. We start with
analyzing the type and the size of the global history that
Intel uses to predict correlated branches, for two reasons
– it’s the easiest to reason about without knowing other
details, and the size and structure of the global history often
tells us something about the structure of the predictor itself.
We then expand our study to include other undocumented
and previously unknown details of the predictor, including
the number and the size of the predictor tables and their
indexing functions.

3.1. Assumptions
Since the Intel CBP structure is completely undocumented,
we must start with only a small set of assumptions: We
assume the CBP uses some form of global history, the CBP
has a TAGE-like structure, i.e., it has multiple tables to

1207

Table 1: Specifications of the analyzed processors.
Machine machine 1 machine 2 machine 3 machine 4

Model Name Core i9-12900K Core i7-1165G7 Xeon Gold 6314U Xeon Gold 6230
µArch. Alder Lake Tiger Lake Ice Lake Cascade Lake
Machine machine 5 machine 6 machine 7

Model Name Core i7-6770HQ Xeon E5-1650 V3 Xeon E3-1230 V2
µArch. Skylake Haswell Ivy Bridge

store the global predictions and the tables are indexed with
global history. In sections 3.3 and 3.4 we will validate these
assumptions and recover the detailed structure of the CBP.

3.2. Experimental Setup
We study the conditional branch predictors (CBPs) used in
three different Intel microarchitectures, described in Table 1.
For brevity, we focus on the Skylake microarchitecture
in the text, and only mention other microarchitectures
when they differ in important details. We analyze the
behavior of the conditional predictor using carefully-crafted
microbenchmarks. For simplicity, the microbenchmarks are
presented here as a mixture of C and x86 assembly; however,
in practice, these are all written directly in x86 assembly
for precision. We use the performance monitor counters
(PMCs) to measure the outcome of experiments. Specifically,
we use performance counters relevant to branch prediction
such as the number of taken (or not-taken) branches and
the number of mispredicted taken (or not-taken) branches.

It should be noted that the experiments described in
this paper are a small fraction of all tests run in our effort
to reverse engineer this unit. What is presented here is
the minimal subset of those experiments that establish the
details necessary to understand the features of the CBP
critical to our isolation defense.

3.3. Global History
As discussed in Section 2.2, the CBPs in modern processors
use global history to capture the correlation between dy-
namic branches. The global history is particularly important
to this analysis because, of all the features used by modern
predictors to access their tables, it is the hardest for
the system/user/compiler to control. The fact that it is
so tightly integrated into the prediction mechanisms in
state-of-the-art predictors is likely, therefore, to create a
challenge. Specifically, we want to know the size of the
global history (in number of branches recorded), what
features are recorded in the global history, and how it
is updated at each branch.

Prior work has shown that these processors use global
history to access the IBP [47], [35]; however, there is no
reason to believe they use the history in similar ways, so
we start with a blank slate in this study.
Recovering the Size of the Global History To uncover
the maximum size of the global history used in the CBP we
start with two correlating branches that appear immediately
after each other. We then increase the distance between
the correlated branches by inserting additional branches
in between. We hypothesize that after a certain distance,
due to limited capacity of the global history, the branch
predictor will no longer capture the correlation between
the two branches (and start mispredicting).

macro dummy_branches(n, i = 0, j = 0)
rep iter in (1..n) //n = Number of Dummy Branches
align(i) jmp label_iter
align(j) label_iter:

endrep
endmacro

Listing 2: Helper macro for creating dummy branches.

for (iter=0; iter < NUM_TRIES; iter++){
k = rand();
if(k); //Train Branch (Miss Rate = ~50%)
dummy_branches(n); //n = Number of Dummy Branches
if(k); //Test Branch

} //Miss Rate = ~0% if correlation captured

Listing 3: Microbenchmark pseudo-code for detecting
the maximum size of the global history used in CBP.

Listing 3 shows the code snippet we use to determine the
size of the history. It consists of a branch (test branch) whose
outcome is directly correlated with the outcome of another
branch (train branch). The train branch is conditioned on a
random bit (line 2); this ensures that its direction cannot be
predicted locally nor globally. The test branch, however, can
be predicted if the branch predictor captures its correlation
with the train branch. In between these two branches, we
insert a variable number of dummy branches until we
exhaust the global history.

For this experiment, we use unconditional (and thus
taken) branches as dummy branches. While it is not obvious
that unconditional branches would even be stored in the
global history, our experiments (including this one) confirm
that they are. We use unconditional branches instead of
conditional always-taken branches because they are simpler
and result in measurements that are less noisy.

We increase the number of dummy branches (n) from
0 to 100, and measure the mispredictions rate for the
two branches. For the train branch, the predictor has a
miss rate of 0.5; this is expected since branch condition is
random. For the test branch, we expect to see one of two
possible outcomes for each value of n: (1) the predictor
captures the correlation to perfectly predict the test branch
(miss rate of 0), or (2) the predictor does not capture the
correlation, making it unpredictable (miss rate of 0.5). Thus,
on average, when we measure the predictor accuracy for
the two branches together, we expect to see a miss rate
of 0.25 if the predictor captures the correlation between
branches, and a miss rate of 0.5 otherwise.

Figure 2a summarizes our results. We find that the
CBP can capture the correlation between the train and test
branches when there are up to 92 taken dummy branches
between them. This implies that global history stores the
footprint of the last 93 taken branches (the train branch
plus 92 dummy branches).

Since the global history could also be affected by
not-taken branches, we evaluate the effects of not-taken
branches. Specifically, we repeat our experiment but insert
not-taken dummy branches branches between the train and
test branches. We find that the CBP can predict the test
branch regardless of the number of not-taken branches: as
Figure 2b shows, even with hundreds of not-taken dummy
branches between the correlated branches, the misprediction

1208

0 92 110
Num. of Dummy Branches

0.25

0.50

M
is

s
R

at
e

(a) Taken dummies.

0 500 1000
Num. of Dummy Branches

0.25

0.50

M
is

s
R

at
e

(b) Not-taken dummies.
Figure 2: Miss rate of two correlated branches due
to variable number of dummies between them. This
helps determine the maximum size of global history.

11826
alignment

0.25

0.50

M
is

s
R

at
e

(a) Branch address.

1526
alignment

0.25

0.50
M

is
s

R
at

e

(b) Target address.
Figure 3: Miss rate of two correlated branches due to
variable alignment of the inputs to the PHR.

rate remains constant (at 0.25).
Finally, we repeat these experiments by randomizing

both the branch addresses and their targets. We do this to
ensure that the addresses of the branches (and their targets),
which affect the global history (as we will see shortly), do
not invalidate our observation.

Observation 1. Global history records the history
footprint of the last 93 taken branches, whether they
are conditional or unconditional. Not-taken branches
do not affect the history.

This observation indicates that our predictor already
deviates from expectations. It does not have the standard
global history register structure. Global history as used for
conditional branch prediction is typically implemented in
one of two ways:
▶ Global History Register (GHR): a shift register that

inserts “1” when a conditional branch is taken and “0”
when it is not taken [55], [80]. The GHR always inserts
the direction of the conditional branch regardless of
whether it is taken or not taken. The GHR is by far
the most common form of global path history in the
literature [101], [55], [44], [57], [74], and is used in the
original TAGE predictor [80].

▶ Path History Register (PHR): a shift register that
inserts a bit (or a few bits) every time a conditional
branch is taken [61], [74]. The PHR in [73], for example,
inserts one address bit per conditional branch.

From Observation 1, it is clear that the Intel CBPs use a
PHR for global history. However, this PHR also deviates
from PHRs used in the literature, which are only updated
for conditional taken branches and ignore unconditional
branches. In the rest of this section we describe our work
recovering the structure of this PHR.
Recovering inputs to the PHR We start by identifying
the inputs to the PHR. As mentioned above, a PHR typically
inserts a set of address bits on each taken branch. These
bits can be from the address of the branch instruction itself,

for (iter=0; iter < NUM_TRIES; iter++){
cmp rand(),0; //Condition of Branches
dummy_branches(93,i,j); //Clearing PHR
align(i) je lbl_tr //Train Branch
align(j) lbl_tr: //Miss Rate = ~50%
je lbl_ts //Test Branch
lbl_ts: //Miss Rate = ~0% if correlation captured

}

Listing 4: Microbenchmark pseudo-code for recovering
inputs (branch and target addresses) to the PHR.

the address of the target, or a combination of the two.
We assume that the i lower bits of the branch address

and the j lower bits of the target address are used to update
the k lower bits of the PHR when the branch is taken. Our
goal is to experimentally validate that the PHR actually has
this structure—and to recover the structure details, i.e., i
and j (and later k). We do this using an experiment similar
to our first (see Listing 4). In this experiment, though, we
vary the train branch address (and the target address) to
understand which bits affect the test branch prediction rate.

We start by clearing the PHR, i.e., setting the PHR to
all-zeros, before the train branch. We do this using 93 taken
dummy branches. From Observation 1, we know that only
the last 93 branches have an impact on the PHR. But, since
we do not know which bits from the addresses are used
to update the PHR, we use dummy branches that have an
address aligned to i0 and a target aligned to j0 bits, so that
the lowest i0 and j0 bits are all zero respectively. If i0 and
j0 are large enough, i.e., i0 ≥ i and j0 ≥ j, the PHR will
(very likely) be zero: each branch would insert at least one
zero into the shift register. We test this by aligning our
train branch (and its target) similarly and measuring the
test branch prediction rate: if the PHR is indeed zero, we
expect the misprediction rate for the correlated test branch
to be high—we effectively do not have any history from
the train branch.

We vary i0 and j0 (from 1 to 26) and find that the i = 19
lower bits of the branch address and j = 6 lower bits of
the target address are used to update the PHR. Figure 3a
shows our findings for the former: the misprediction rate
increases from 0.25 (correlation captured) to 0.5 (both train
and test branches mispredicted) when we increase the
branch address alignment from 18 to 19, but keep alignment
of the target address fixed (to 19). Figure 3b shows our
findings for the latter: the misprediction rate jumps when
the target address alignment goes from 5 to 6. Therefore,
in the Skylake microarchitecture, only the 19 lower bits of
branch address and 6 lower bits of target address are used
to update the PHR when a branch is taken.

The next step is to recover which (of the i and j) bits
are used to update PHR. As shown in Listing 5, we do
this by first clearing the PHR and then flipping one bit
of the branch address or target address at a time. Iff a bit
is used to update PHR, we expect the CBP to capture the
correlation between the train and test branches. We find
that only 16 (of 19) bits of the branch address are used
to update the PHR—the three least significant bits are not
used. All 6 lower bits of the target address are used to
update the PHR.

1209

for (i=0; i < NUM_TRIES; i++){
cmp rand(),0;
dummy_branches(93,19); //Clearing PHR
SET_ADDRESS(variable); //PC[18:0] = variable
je lbl_tr //Train Branch, Miss Rate = ~50%
SET_ADDRESS(variable); //PC[5:0] = variable
lbl_ts:
je lbl_ts //Test Branch
lbl_ts: //Miss Rate = ~0% if correlation captured

}

Listing 5: Microbenchmark pseudo-code for recovering
the update function of the PHR.

Table 2: Recovering positions of affected bits in PHR.
Flipped bit dummy branches Flipped bit dummy branches

T0, B3, T1, B4 92 B9, B10 88
T2, B7, T3, B7 91 B13, B14 87
T4, B11, T5, B12 90 B15, B16 86
B5, B6 89 B17, B18 85

Observation 2. In the Skylake microarchitecture, the
following bits are used to update the PHR:
▶ Branch Address [18:3] : 16 bits
▶ Branch Target Address [5:0] : 6 bits

Recovering the PHR update function Our next step is to
understand how the PHR is precisely updated to account for
new branches. We assume the PHR is not (16+6)×93 bits
deep, but rather these bits are folded into the PHR via XOR
(since both AND and OR are biased) and shifted before the
next branch is included, following the design of PHRs from
the literature [61], [73]. To understand which bits are folded
in this update function, we use an experiment similar to
that of Listing 5: we first clear the PHR, then we flip a pair
of bits from branch address and target address (including all
permutations of 2 bits out of the (16+6) bits) to figure out
if they are combined in the PHR update function (or not).
Figure 4 summarizes our findings – which bits of the target
address are XORed with which bits of the branch address.
In the Skylake microarchitecture (Figure 4a), for example,
we find that bit 0 of the target address is XORed with bit
3 of the branch address: when we flip both of these bits,
the branch predictor cannot capture correlation between
train and test branches, i.e., they cancel each other’s effect
in the PHR update function.

To recover the exact PHR update function, we also need
to figure out how many bits the PHR is shifted by on each
update and precisely which bits of the PHR are affected
on each update. We do this with several experiments. First,
we repeat the history length experiment (Listing 3) more
precisely: we clear the PHR, then we flip only one bit of
the branch address or the target address to figure out the
maximum number of dummy branches that can be inserted
in between train and test branches while still capturing the
correlation between them. Our insight is that the dummy
branches shift the footprint of the train branch through the
PHR, and thus how long a particular bit remains depends
on the position where it was originally inserted.

Table 2 summarizes our findings. We find, for example,
that when B5 (bit number 5 in the branch address) is
flipped, the CBP can capture correlation between train and

T0: Bit number 0 in target address B1: Bit number 1 in branch address ⨁: XOR operation
B11⨁T4B18 B16B17 B15 B8⨁T3 B7⨁T2 B4⨁T1B14 B10B13 B9 B6 B5 B12⨁T5 B3⨁T0

(a) Cascade Lake and Skylake.
B11⨁T5B15 B13B14 B12 B2⨁T4 B1⨁T3 B0⨁T2 B10 B8B9 B7 B6 B5 B4⨁T1 B3⨁T0

(b) Alder Lake.
Figure 4: Footprint in Alder Lake and Skylake.

Table 3: PHR structure in Intel microarchitectures.
Microarchitecture PHR Size Branch Addr. Target Addr. Footprint

Alder Lake/Tiger Lake/Ice Lake 194× 2 B[15 : 0] T [5 : 0] Figure 4b
Cascade Lake/Skylake 93× 2 B[18 : 3] T [5 : 0] Figure 4a
Haswell/Ivy Bridge 93× 2 B[19 : 4] T [5 : 0] Figure 14

test branches with up to 89 dummy branches in between.
In other words, 89 dummy branches place the affected bit
by B5 in the most significant bit (MSB) of the PHR, and
the 90th dummy branch will toss it out. By examining the
number of dummy branches that place the affected bit of
the PHR in the MSB position, we recover the PHR update
function. Our exhaustive experiments reveal that each taken
branch clears two bits from the PHR and affects the 16
lower bits of the PHR. We call these 16 bits the branch
footprint. From these findings we draw two conclusions: (1)
the PHR is a shift-register that always shifts two bits per
taken branch, and its size is 93× 2 bits, and (2) the branch
address and target address footprint (given in Figure 4) is
XORed with the PHR after it is shifted.

Observation 3. The PHR is updated in two steps
whenever a branch is taken by:
1) Shift two bits to the left: PHR = PHR << 2
2) XOR the 16-bit footprint into the PHR:

PHR[15:0] = PHR[15:0] ⊕ footprint

Table 3 summarizes the fully deconstructed structure of the
global history for various Intel microarchitectures, which
only differ in minor ways. Previous work [47], [35] has
employed similar approaches to find the global history used
for indirect branch prediction. While CBP’s PHR update
function is interestingly similar to what has been found for
indirect branch prediction [47], [35], they differ in size and
how they are used to access the structures they respectively
target.

3.4. Pattern History Tables (PHTs)
In this section we use our new understanding of the PHR to
recover the structure of the CBP tables. This is critical for
building defenses against branch-based attacks; simply put,
we cannot reason about defenses that attempt to partition
these CBP tables without knowing the structure of the
tables and how they are indexed.

The CBPs have a TAGE-like structure [80], [76], [77].
In a TAGE-like predictor, tagged components, or PHTs, are
the main data structures that store the actual predictions
for correlating branches. Hence, to recover the CBP tables,
we first need to know their inputs, i.e., what information
the CBP uses to look up a table and retrieve a prediction.
These components, as described in Section 2.2, are typically
indexed using a combination of the global history (PHR)
and the branch address (PC). We start by discovering which

1210

for (i=0; i < NUM_TRIES; i++){
k = rand();
SET_PHR(k0..0); //PHR = k0...0
align(alignment) //PC[alignment:0] = 0
if(k); //Test Branch 1
SET_PHR(k0..0); //PHR = k0...0
align(alignment) //PC[alignment:0] = 0
if(!k); //Test Branch 2

}

Listing 6: Microbenchmark pseudo-code for recovering
which PC bits are used in the PHT look-up process.

2 5 8 11 14
alignment

0.0

0.5

M
is

s
R

at
e

Figure 5: Recovering PC bits used in PHT look-ups.

bits of the PC are used in the PHT look-up process. We
then build on this to recover the precise structure of the
PHTs.
Recovering the PC Input Bits In order to determine
how many bits of the PC are involved in the index and
tag hash functions, we intentionally force aliasing between
two branches. Aliasing occurs when the CBP provides the
prediction for two (or more) branches with a single entry
from the PHTs or the base predictor – more specifically,
when the indexing function (and tag) for the two branches
are indistinguishable from each other. Our ability (or not)
to force aliasing, then, tells us which bits are used in the
index or tag.

For two branches to alias, the PC bits used in the
index or tag should be the same. To recover which bits
are used, we use two test branches that are aligned but
whose directions are mutually exclusive at each iteration,
as Listing 6 shows. When the first branch is taken, the
second branch is not taken, and vice versa. To ensure the
PHR does not impact our measurements, for both branches
we set the PHRs to be the same: all zeros except for the
most significant bit, equal to k, which is the direction of
the first branch.

Since these branches are correlated, the CBP should
capture the correlation between them by means of the
PHTs unless they alias. In other words, the misprediction
rate should increase as we increase the alignment. Figure 5
shows our results: when both branches have an alignment
of up to 11, the miss rate is low, but when it goes up to 12,
the miss rate increases to 0.5 indicating aliasing between
the branches.

Observation 4. The 12 lower bits of the PC are used
as input to the index and/or tag hash functions. Other
microbenchmarks confirmed that all of these 12 lower
bits of the PC are involved in either the index or tag
hash functions.

Recovering the Associativity Pattern history tables
contain tagged entries and are roughly organized as a cache.
To recover the structure of the PHTs, then, we need to

� � �� ��
1XP��RI�%UDQFKHV

�

��

�
�R
I�0

LV
VH
V PC[5]=1

PC[5]=0

Figure 6: Associativity of the last PHT. The predictor
is able to predict 4 unique PCs with PC[5]=0 and 4
unique PCs with PC[5]=1.

recover the associativity – the number of entries that can
share the same index – of the different tables. We do this
by determining how many ⟨PHR, PC⟩ combinations can be
predicted for the same PHRs but similar (i.e., not the same)
PCs.∗ For this experiment, we need the branches (i.e., the
⟨PHR, PC⟩) to lead to the same index and different tags, to
ultimately create conflict misses. This is difficult without
knowing the index function and the tag function. But as
we see in the next section, knowing the associativity is key
to finding the index function, so we tackle the associativity
first.

We start with the last PHT – the table that uses the
longest history length. We target this PHT by placing
a single correlating bit in the highest bit of the PHR.
Listing 7 shows how we find its associativity. Here, we
use a variable number of branches with the same PHR
but different PC. We increase the number of branches and
measure the misprediction rate. In this experiment (with
various permutations, starting addresses, etc.), we find that
we largely cannot capture more than 4 unique PCs, i.e., the
associativity is at most 4.

These results are robust even when we vary the branch
addresses. This suggests that the PC is largely not used in
the PHT index function.

The one exception is bit PC[5] on Alder Lake/Skylake.
If we spread the branch addresses so that PC[5] is both
0 and 1 for different branches, we can predict as many
as 8 branches accurately. In other words, changing PC[5]
causes the index function to select a different set. We can
see an instance of this in Figure 6, where we get conflict
misses with more than 4 unique PCs, but as soon as we
advance far enough in the code so that PC[5] flips, we
then can capture 4 more branches accurately. We observe
this same behavior for Cascade Lake and the Ivy Bridge
microarchitecture (though for Ivy Bridge, PC[4] is used as
part of the PHT index rather than PC[5]).

We recover the other PHTs similarly. Specifically, we
run versions of this microbenchmark, moving the one bit
of correlation to different positions in the PHR. That is, we
change the position of k in PHR = k0...0 from PHR[185] to
PHR[0] and measure how many branches can be correctly
predicted (the associativity) for each case, keeping PC[5]=0.

Figure 7 shows our measurements. We have an associa-
tivity of 4 when using history bits PHR[185:58], 8 when
using PHR[57:22], and 12 when using PHR[21:0]. These
results reveal quite a bit about the underlying tables. Higher
tables in the TAGE predictor use longer histories (more

∗If they have the same lower bits, they would just alias and use the
same entry.

1211

for (i=0; i < NUM_TRIES; i++){
k = rand();
SET_PHR(k0..0); //PHR = k0...0
SET_ADDRESS(1); //PC[11:0] = 0
if(k); //Test Branch 1
...
SET_PHR(k0..0); //PHR = k0...0
SET_ADDRESS(n); //PC[11:0] = n-1
if(k); //Test Branch n

}

Listing 7: Microbenchmark pseudo-code for recovering
the associativity of the last PHT.

of the PHR), overlapping the histories captured by smaller
tables. The size of the steps in the graph suggest that there
are three PHTs, each of which is 4-way set associative.
When using the lower bits of the global history, all three
tables can each hold four distinct PCs. But when using bits
22 and higher, the lowest table is of no use, and only the
eight entries in tables 2 and 3 are useful. When using bit
58 or higher, only the associativity in the highest table is
of use.

Observation 5. There are 3 PHTs in the CBP, each
of which is a 4-way set associative table. Only one bit
of the PC is used to index the PHTs (PC[5] on Alder
Lake, Tiger Lake, Ice Lake, Skylake and Cascade Lake,
PC[4] on Haswell and Ivy Bridge).

Recovering the Index Hash Functions The last piece of
our PHT puzzle is the index functions of each PHT. We
assume that index functions use folded instances of the
global history (much like the PHR update function). We
start with the index function of the last PHT, which uses
the longest history length. Assume that bit number n and
bit number m of the global history are combined together
to make a single bit in the index hash function of the last
PHT (58 ≤ n,m ≤ 185). Therefore, if there is a conflict in
the PHT when both bit n and bit m of the PHR differ, then
these two branch/history pairs are mapped to the same set
in the last PHT, and thus the two bits are folded together in
the index function. This happens when the index function
cannot distinguish between n=0,m=1 and n=1,m=0, resulting
in the same index and thus conflict misses.

Similar to Listing 7, we design an experiment which
includes two groups of branches. The first group has four
branches with PHR = 0k0...0 (position of k is fixed and
equal to 184 for the single experiment shown) and the
second group is comprised of four additional branches
with PHR = 0...0k0...0 (position of k is variable in the
experiment and varies from 185 to 0). With no conflicts
(different index), we should be able to predict both groups
of branches after the first few iterations since our tables
are 4-way associative. However, if the branches in the first
and the second group both map to the same set in PHT
(same index), we will observe an eviction (by measuring a
loss in accuracy). Figure 8 shows the number of correctly
predicted branches, depending on the position of the k bit
in the second group of branches. It is clear that for certain
k the number of correctly predicted branches drops from 8
to 4, indicating that these bits are combined together (in

0 21 57 185
Position of 'k' Bit in PHR

4

8

12

#
 o

f C
or

re
ct

Pr
ed

ic
tio

ns

Figure 7: Associativity of all PHTs. We have an asso-
ciativity of 4 when using history bits PHR[185:58], 8
when using PHR[57:22], and 12 when using PHR[21:0].

1 8 17 24 33 40 49 56 65 72 81 88 97 10
4

11
3

12
0

12
9

13
6

14
5

15
2

16
1

16
8

17
7

18
4

Position of 'k' Bit in PHR

4

8

#
 o

f C
or

re
ct

Pr
ed

ic
tio

ns

Figure 8: PHR bits that are folded into the index.

this case, with bit 184) and map to the same set in the last
PHT.

We observe that bits 8, 24, 40, . . . , 168, 184 from the
even PHR bits and 1, 17, 33, . . . , 161, 177 from the odd
PHR bits form an arithmetic series with the constant
difference of 16. This indicates that the index function uses
a straightforward, regular folding function (i.e., sequences
of sixteen bits are repeatedly folded with other sequences
of sixteen bits, with even and odd bits handled differently).
Building on this, we exhaustively consider all pairs of bit
positions to recover the exact hash function used to index
each PHT. A generalized formulation of index functions is
presented below.
Hint: PHR[16i+8,16i-6,2] means PHR[start:end:step].
▶ PHT #3: Index[7:0] = PHR[16i+8,16i-6,2] ⊕

PHR[16j+1,16j-13,2] : i ∈ [11,1] , j ∈ [11,0]
▶ PHT #2: Index[7:0] = PHR[16i+8,16i-6,2] ⊕

PHR[16j+1,16j-13,2] : i ∈ [3,1] , j ∈ [3,0]
▶ PHT #1: Index[7:0] = PHR[20,6,2] ⊕ PHR[15,1,2]

From prior experiments, we know that PC[5] is used in
the index function too. To understand how this bit is used,
we perform similar experiments (which create deterministic
conflicts). These experiments indicate that each PHT index
function is index by 9 bits in total: the first 8 bits come from
the folded global history, the ninth bit is PC[5], i.e., for all
PHTs Index[8] = PC[5] (PC[4] on Haswell/Ivy Bridge).

Observation 6. Each PHT is indexed by a 9-bit index
function, using eight bits derived from global history,
and a single bit of the PC which is not combined with
any other bits. This same bit is also used (without
being combined) for the base predictor.

Implication: Partitioned Branch Predictor From a
security standpoint, this final observation has enormous
implications. It means that no branch for which PC[5] is 0
can possibly be influenced by branches for which PC[5] is 1,
in any of the PHTs. They cannot cause evictions to reduce
branch accuracy. They cannot detect evictions, eliminating
side channels. They cannot mistrain branches because they
cannot induce aliasing across this partition.

1212

Table 4: PHTs in Intel microarchitectures.
Microarchitecture Num. of PHTs Index Length Size of Each PHT

Alder Lake/Tiger Lake/Ice Lake 3 9 = 8 + PC[5] 2048 = 29 × 4
Cascade Lake/ Skylake

Haswell/Ivy Bridge 3 9 = 8 + PC[4] 2048 = 29 × 4

To ensure that the Base Predictor does not invalidate
our assumption – that we can partition the entire branch
predictor – we perform a last set of experiments. These ex-
periments are very straightforward since the base predictor
is simple and described in Appendix A.3. We find that the
base predictor is indexed directly by 13 lower bits of the
branch address (PC[12:0]). Thus, every table in the CBP is
fully partitioned by PC[5] (PC[4] in Haswell/Ivy Bridge).

Table 4 summaries the PHTs for different Intel microar-
chitectures. All tables are 4-way set associative with 9
bits of index (8 bits from folded PHR plus 1 bit from PC).
Note that Half&Half works on the primary server-level
CPUs produced by Intel spanning more than a decade,
during which time Intel has averaged over 95% of the
server/datacenter CPU market share [68]. In the next section
we use these microarchitectural details to build more secure
systems.

4. Partitioning the CBP with Half&Half
This section introduces our CBP partitioning mechanism,
dubbed Half&Half, a fast, software-only defense against
branch-based side channel and mistraining attacks that is
enabled by the in-depth knowledge we gained from our
reverse-engineering analysis.

4.1. Assumptions and Threat Model
Our goal is to isolate the conditional branch behavior of two
mutually distrusting code components that are executed
on a single CPU. One or both of these code components
may be malicious, and seek to infer or affect the control-
flow of the other component by creating collisions (either
aliasing or conflicts) in the entries of the conditional branch
predictor. The two code components may be run on the
same physical processor core – either as co-resident SMT
threads, or time-separated execution flows. We additionally
make no assumptions about how the two components are
separated at the process level — they may be run in separate
OS processes, or in separate security domains (such as
userspace and kernel code), or even in a single process
sandboxed by WebAssembly — a technique to sandbox
untrusted code components within a single process. We
assume that the test machine employs mitigations against
other attacks on the branch predictor, such as attacks
that target the branch target buffer [47] or the return
stack buffer [48] and consider these out of scope. We
also consider microarchitectural attacks that exploit the
memory subsystem (e.g., Meltdown [54], MDS [93], [18],
and LVI [92]) out of scope for this paper. Finally, since the
two components are isolated and do not communicate, we
consider the in-place Spectre-PHT attack [47], [46], [21] (an
attack which requires the malicious component to directly
invoke the other component with carefully chosen inputs
in order to mistrain branches) out of scope, because it does

not exploit contention or aliasing.
Our defense partitions the CBP of different code com-

ponents by carefully picking alignments of branches in the
binaries of these components. This assumes that we can
control the location of branches in the compiled binary
versions of the code components (which is possible either
with a small modification during compilation or by directly
modifying binaries). Importantly, we do not require any
changes to existing source code or existing hardware.

4.2. Overview
As discussed in Section 3, the base predictor is indexed
using the 13 lower bits of the branch address while the
PHTs are accessed via a 9-bit index, of which 8 bits come
from the folded path history register (PHR) and 1 bit comes
from the PC – PC[5] (the sixth bit of the PC) for Alder
Lake, Tiger Lake, Ice Lake, Cascade Lake, and Skylake and
PC[4] for Haswell and Ivy Bridge. Using this information,
we partition the pattern history tables (PHTs) and the base
predictor by partitioning their index function, which is done
most easily by exploiting the PC bit. That is, by forcing
every branch of a thread to be at an address with PC[5]==0
on (Alder Lake-Skylake), that thread has access to exactly
half the entries in each of the four tables, and will share
zero entries with another thread where all branches have
PC[5]==1. Note that because this is a symmetric division
of the address space, we can even compile a single binary,
and only at load time decide which of the two regions will
be used, simply by varying the start address.

With two isolated CBP partitions, we can secure a
large class of possible applications, including isolation of
user code from kernel code (described in appendix A.5),
isolation of co-resident SMT threads from each other (in the
most common case of 2 hardware contexts), and isolation
of the trusted application code from any untrusted code
sandboxed by WebAssembly. We can, in theory, extend
this to more than two partitions, however doing so would
impose very significant performance penalties due to the
additional restrictions on branch placement, since we now
have to control bits of the PHR to do so.

Support for two partitions is particularly powerful in
the SMT (hyperthreading) case, as these Intel processors
all have a thread limit of two. In an SMT processor, the
BPU tables and the BTB are typically shared [88]. When
paired with Intel’s STIBP [39], which isolates the BTB
but does nothing for the shared CBP, we can for the first
time provide a complete solution for control flow isolation
between co-executing SMT threads on the same core.

4.3. Implementation
In order to partition the CBP into two isolated domains,
we need to adjust the addresses of all conditional branches
of each program such that their PC[5] bit (PC[4] on
some microarchitectures) is constant. We automate this
process by modifying two existing compilers to compile
code such that it meets our partitioning requirements.
First, we implemented our partitioning scheme in LLVM
to demonstrate how we can compile existing C/C++ code

1213

without modification. Next, we implemented our scheme
in Swivel [62]—a WebAssembly compiler that sandboxes
untrusted code to prevent memory safety attacks (buffer
overflows, user-after-frees etc), as well as Spectre style
attacks; in particular, we replaced some of Swivel’s slower
mitigations that prevent Spectre-PHT attacks with our light-
weight CBP partitioning scheme. Pairing Half&Half with
Swivel-SFI (BTB, RSB) results in a comprehensive Spectre
solution that is much faster than anything prior.
Implementing the partitioning scheme In order to
implement the address adjustment modifications on top
of these compilers, we added code to adjust the addresses
of conditional branches before emitting binary. This can
be done by inserting sufficient NOP instructions to meet
our alignment requirements. However, this naive approach
has higher overheads than necessary; for example, a single
branch may require as many as 32 NOP instructions for
suitable alignment†. To address this issue, we apply three
simple optimizations in our compiler modifications:
▶ Using Multi-Byte NOPs: The x86 architecture al-

lows construction of NOP instructions of different
lengths [41]. Multi-byte NOPs have the advantage
of requiring less instruction decoding bandwidth and
being quicker to translate than a sequence of one byte
NOPs. We take advantage of this support, to use NOP
instructions as large as 15 bytes.

▶ Jumping over NOPs: We observed that it was simply
more efficient to jump over the sequence of NOP bytes
for sequences of NOPs larger than 15 bytes. This is
possible as the NOP instructions are only present to
align conditional branch instructions and do not actually
have to be run‡.

▶ Alignment-Invariant NOP Motion: We found that
inserting the required NOPs right before the branch
instruction exacerbates the execution time overhead
since they are often placed inside backward loops. We
instead inject the NOPs right after the previous branch
instruction. By doing this, we are less likely to fill inner
loops with NOPs, reducing lost performance due to fetch
and decode overhead.
Figure 9 shows an example code alongside its translation

to domain A. For domain A, we need to ensure that the fifth
bit of the address of all conditional branches is set to zero,
i.e., PC[5]=0. Therefore, in the example code, the second and
the third branch need to be adjusted. The second branch is
23 bytes from the next boundary. Since 23 is more than the
threshold (16 bytes), the compiler inserts an unconditional
branch before the NOPs to jump over them. Note that the
unconditional jump is a 2-byte instruction and the compiler
only inserts 23-2=21 bytes of NOPs (a 15-byte NOP and a
6-byte NOP) before the conditional branch to set PC[5] to
zero. In this example, after inserting NOPs for the second

†NOP instructions do not use ALU resources, but still require CPU
resources to fetch, decode, and convert to micro-ops. Thus, use of NOP
instructions should be minimized where possible.

‡The extra jump instruction added is an unconditional and therefore
does not lookup or update the CBP tables.

40DF80: je

40DFA9: jne

40DFB7: je 1100

{

…

40DF80: je
40DFA9: jmp 40DFC0
40DFAB: NOP15 // 15-Byte NOP
40DFBA: NOP6 // 6-Byte NOP

40DFC0: jne

40DFCE: je
…

…

…

Domain 0 (PC[5] = 0)Original Code

1000

{

1010

{

1011

{

Figure 9: Translating regular code to an isolated
partition of the CBP (domain A).

branch, the third branch does not require any extra NOPs
as its new address already satisfies our goal (PC[5]=0).
Architecture independent partitioning In order to make
Half&Half compatible with various microarchitectures, we
designed a new configuration where we partition both
PC[4] and PC[5] bits. In this case, Domain A is where
both bits are 0, and Domain B has both bits 1. Because each
architecture only partitions on one of the bits, each domain
still has access to half the predictor (despite using 1/4 of
the address space), but the required NOPs for padding is
increased. With this configuration, the partitioning mecha-
nism will work across different processors and it will not
need processor-based compilation.

5. Evaluation
This section evaluates our approach of partitioning the
CBP (Half&Half) into two isolated domains to prevent
branch based attacks. We start with a security evaluation
of Half&Half, followed by a performance evaluation.

5.1. Security Evaluation
To investigate the security of Half&Half, we first show that
the branch prediction of two partitioned CBP domains,
domain “A” and domain “B”, are isolated, i.e., branch
prediction of code running in domain “A” is unaffected
by code running in domain “B”. After this, we demonstrate
Half&Half prevents the proof-of-concept Spectre-PHT at-
tacks from Google’s SafeSide suite.

Our experiment to investigate the effectiveness of
Half&Half’s CBP partitioning scheme consists of two
functions—Function A and Function B, which are run in two
partitioned domains of the CBP. Function A is considered
benign, and runs a sequence of 1024 conditional branches.
Function B is considered malicious, and aims to change
the branch prediction accuracy of Function A by running a
sequence of N branches, where N is configurable. Branches’
directions within a function are correlated and correlation
distances are widely varied. CBP will therefore utilize all
PHTs together with the base predictor in order to maximize
its prediction accuracy. As we have partitioned the CBP,
we expect that the branch prediction rate of Function A
is the same whether it is executed in isolation or it is
executed alongside Function B (for any value of N). In our
experiment, we evaluate this statement in both sequential
and parallel settings: we first run Function A and Function
B interleaved in a single thread; next, we run Function A
and Function B in parallel on one CPU core.

1214

0 10k 20k 30k
Number of Branches in Function B

0.0

0.2

0.4

M
is

s
R

at
e

(F
un

ct
io

n
A)

Partitioning Disabled
Partitioning Enabled

(a) Single-Thread

0 10k 20k 30k
Number of Branches in Function B

0.0

0.2

0.4

M
is

s
R

at
e

(F
un

ct
io

n
A)

Partitioning Disabled
Partitioning Enabled

(b) Multi-Thread
Figure 10: Misprediction rate of Function “A” (Y-axis),
when Function “B” is run on either the same or
a concurrent thread on a single CPU core. The X-
axis varies the number of branches (N) executed in
Function B.

Sequential setting To collect our baseline numbers, we
first run Function A in a loop 100k times to measure the
branch prediction accuracy of this function in isolation. We
then repeat this procedure, but this time we follow each
call to Function A with a call to Function B, configured
with N=1 branch. This results in 100k calls to Function
A interleaved with 100k calls to Function B, for which
we once again measure the branch prediction accuracy of
Function A. We then repeat this procedure for different
values of N (the number of branches in Function B), up to
N=30000. The results are shown in Figure 10a which graphs
the misprediction rate of Function A, for different values
of N. We see that the misprediction rate of Function A
when partitioned is completely flat for any value of N, i.e.,
it is completely isolated from the control flow behavior of
Function B. Additionally, when we repeat the experiment
without partitioning, we see in Figure 10a that Function A’s
branch prediction behavior is significantly affected by
Function B’s activity, causing an order of magnitude more
misses.
Parallel setting To ensure Half&Half is secure even in
parallel (SMT) settings, we repeat the prior experiment
with two threads—Thread A and Thread B, both pinned to
a single core. Specifically, we pin these threads to different
virtual or hyperthreaded cores that map to a single physical
core to ensure that the threads share a branch prediction
unit. In the experiment, Thread A runs Function A in
parallel with Thread B running Function B, and we show
the results in Figure 10b. Similar to the prior experiment,
we observe that the misprediction rate of Function A
is independent of Function B and the value of N when
partitioning is enabled.
Testing the out-of-place Spectre-PHT attack To examine
the effectiveness of Half&Half against the out-of-place
Spectre-PHT attack [106], [8], [17], we run the proof-
of-concept implementation of this attack from Google’s
SafeSide suite [8] with and without partitioning. We find
that, when partitioning is enabled, an attacker cannot poison
the CBP to make mispredictions in the victim code.

5.2. Performance
To evaluate the performance overhead of Half&Half, we
modify two existing compilers to output binaries that
are restricted to one of two partitions of the CBP. First,
we modify LLVM so we can measure the overhead on
existing native (C/C++) code. Next, we modify Swivel [62] (a

pe
rlb

en
ch

bz
ip2 gc

c
mcf

go
bm

k

hm
mer

sje
ng

lib
qu

an
tu

m

h2
64

re
f

om
ne

tp
p

as
tar

xa
lan

cb
mk

milc
na

md

so
ple

x

po
vr

ay lbm

sp
hin

x3

Geo
mea

n
0%

5%

10%

E
xe

cu
tio

n
Ti

m
e

O
ve

rh
ea

d

PC[4] PC[5] Architecture Independent

Figure 11: Performance overhead of Half&Half (LLVM)
on SPEC 2006 benchmarks.

WebAssembly compiler that inserts mitigations for Spectre
style attacks) to leverage CBP partitioning for its Spectre
mitigations, and measure speedups. We use these compilers
to evaluate the performance of standard benchmarks such
as SPEC CPU 2006 [34] benchmarks and Sightglass [6]–a
benchmark suite which includes cryptographic primitives,
mathematical functions, and common programming utilities
such as heapsort, strcat, and strtok.
Benchmark setup To measure the performance overhead
of native code, all benchmarks are run on three machines:
(1) A 16-core, 24-thread Alder Lake CPU (3.20-5.20GHz)
running Ubuntu 22.04 LTS with the generic Linux kernel
version 6.0.9-060009, (2) a 4-core, 8-thread Skylake CPU
(2.60-3.50GHz) running Ubuntu 20.04 LTS with the generic
Linux kernel version 4.4.0-210, and (3) a 4-core, 8-thread
Ivy Bridge CPU (3.20-3.60 GHz) running Ubuntu 20.04 LTS
with the generic Linux kernel version 5.16.10. To measure
the speedup of WebAssembly spectre mitigations, we run
the corresponding benchmarks on machines 2 and 3. We
run our experiments on these three microarchitectures
as the partitioning approach differs slightly across them
(See Section 4.2 for details). Unless otherwise specified, all
benchmarks are pinned to a single (physical) CPU core. All
benchmarks used in this section are compiled with statically
linked libraries, in order to ensure that libraries are also
partitioned.
Overhead of partitioning native code To measure
the impact of partitioning on native code, we use our
modified LLVM compiler to compile programs from SPEC
2006 in three settings: (1) using the full CBP, (2) using
only the first domain of the CBP (Domain A), and (3)
using only the second domain of the CBP (Domain B).
We show the performance of the programs in Figure 11
for three configurations including the Alder Lake/Skylake
(Only PC[5]), Ivy Bridge (Only PC[4]), and architecture
independent (PC[5:4]). In all cases, the results are the
average of running in Domain A and B (generally, the
performance varies little between the two).

From our experiments, we highlight two observations.
First, we see that partitioning programs to one domain
has low overhead, imposing an overhead of 1.4%-6.8%,
1.2%-6.6%, and 2.2%-8.8% in the Alder Lake/Skylake, Ivy
Bridge, and Portable architectures respectively. Second, as
expected, we see marginally lower overheads on Ivy Bridge
as this microarchitecture requires less padding with NOP
instructions to partition the CBP.

The overhead of CBP primarily comes from two sources.
(1) Reduced branch prediction accuracy due to only being

1215

bzip2 mcf milc namd libquantum lbm astar
0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

O
ve

rh
ea

d

Swivel SFI (BTB, RSB, CBP) Swivel SFI (BTB, RSB) + Half&Half Swivel SFI (BTB, RSB)

Figure 12: Performance overhead of Half&Half
(Swivel) on SPEC 2006 benchmarks.

able to access half the predictor, and (2) the cost of extra
instructions (NOPs) in the instruction stream (which can
include both pipeline and Icache costs). We measure an
overall 2.8% increase in branch misses in partitioned mode,
with gobmk and sjeng seeing the highest increases in
misses/instruction.

The average increase in dynamic instructions due to
NOPs is 9%, varies from 1% to 16%, and is highest in
xalancbmk, bzip2, mcf, and gobmk. Overall performance
cost does not fully scale with the expansion in instructions,
however, since NOPs do not execute and do not have
dependencies. It will hurt applications that are bottlenecked
in the front-end (instruction delivery), and have little or
no impact on applications bottlenecked in the back end
(instruction dependencies) such as memory-intensive mcf.
Speedup of WebAssembly Spectre mitigations We use
the modified Swivel compiler to compile Wasm versions
of the Sightglass benchmarks and the SPEC CPU 2006
benchmarks§. Wasm versions of SPEC and Sightglass bench-
marks are generated by compiling the C/C++ code of these
benchmarks using Clang’s Wasm backend [7] to produce
Wasm binaries. These Wasm binaries are then compiled
using Swivel. We note that our modified Swivel compiler
retains Swivel’s BTB and RSB defenses, but uses Half&Half
to defend the CBP (in place of Swivel’s default CBP
defenses such as eliminating direct branches) as discussed
in Section 4.3. We compare the performance of Half&Half
paired with Swivel-SFI (BTB, RSB) with Swivel-SFI (BTB,
RSB, CBP) and show the results in Figure 12 and Figure 15
(See Appendix A.4) for the SPEC and Sightglass benchmarks
respectively. For each bar, the result is normalized to Swivel-
SFI with no CBP defense, but all other defenses active
(BTB, RSB). For Sightglass, we see that Half&Half based
defense allows Swivel to reduce its conditional branch
isolation overhead to 3.9% as compared to 55.2% for Swivel-
SFI’s conditional branch solution. Similarly for SPEC, the
overhead reduces to (1.4%-4.9%) as compared to (9.4%-95.4%)
for Swivel-SFI. This shows that Half&Half is a viable
defense for preventing Spectre attacks in WebAssembly
settings.
Partitioning the CBP across SMT threads As discussed
in Section 4.2, Half&Half allows the OS to automatically
isolate the CBP of two OS processes/threads that are run
on one physical core (as SMT contexts, or hyperthreads). In
this scenario, the OS scheduler ensures these two threads
are always assigned different CBP partitions.

§Wasm only supports a subset of the SPEC 2006 benchmarks [62], so
we restrict our benchmarks to the supported programs.

pe
rlb

en
ch

bz
ip2 gc

c
mcf

go
bm

k

hm
mer

sje
ng

lib
qu

an
tu

m

h2
64

re
f

om
ne

tp
p

as
tar

xa
lan

cb
mk

milc
na

md

so
ple

x

po
vr

ay lbm

sp
hin

x3

Geo
mea

n
0%

2%

4%

E
xe

cu
tio

n
Ti

m
e

O
ve

rh
ea

d

Domain A Domain B

Figure 13: Performance overhead of Half&Half (LLVM)
on SPEC 2006 with SMT enabled.

We benchmark this exact scenario, and measure the ex-
ecution overhead of Half&Half on multithreaded execution.
Concretely, we create two threads—Thread A and Thread
B—pinned to a single core and configured to use Domain
A and B, respectively. We run all permutations of 2 out
of 18 SPEC benchmarks in Domain A and B (if B finishes
first, it restarts until A finishes). We measure the average
execution time of A, both with conventional execution, and
with A and B isolated. Half&Half overhead, then, is the
relative increase in execution time with partitioning. We
show the results in Figure 13. We see that partitioning the
CBP for hyperthreads only adds an overhead of 0.5%-5.4%.

The two overheads of CBP Partitioning should have
opposite (relative) effects on SMT execution. The loss in
branch prediction accuracy is significantly lowered, as
SMT threads must share the CBP anyway (but they share
it dynamically instead of statically). However, SMT puts
more pressure on the front-end of the pipeline to deliver
instructions at a high rate, so some configurations will
be more sensitive to the NOP expansion. Overall, we see
a small lowering in the cost to use CBP partitioning for
SMT (compared to the single-thread Skylake overhead in
Figure 11). These results demonstrate that our approach
can be used to partition the branch predictors of existing
SMT processors with only minor performance overheads.

6. Conclusion
This paper presents the first comprehensive analysis of the
structure of the conditional branch predictors in modern
Intel CPUs. This analysis uncovers a unique opportunity
to partition the predictor into two parts based on the
branch address. The resulting technique, Half&Half, enables
the system to provide complete CBP isolation between
two domains, disabling CBP side channel and mistraining
attacks. The technique works on current systems with no
hardware changes. Performance overhead of Half&Half is at
most 4.9%, dramatically lower than the prior state-of-the-art
software solution. The ability to partition the CBP into two
mutually separated regions enables opportunities such as
user-kernel isolation, isolation of co-resident SMT threads,
and separation of sandboxes from the calling process.

Acknowledgments
Thanks to Craig Disselkoen and Evan Johnson for their
insightful discussions, and the anonymous reviewers for
their helpful suggestions. This work was supported, in
part, by NSF/Intel Foundational Microarchitecture Research
Grant CCF-1823444, as well as gifts from Intel.

1216

References
[1] The 2nd jilp championship branch prediction competition (cbp-2).

http://www.jilp.org/cbp2006, 2006. [Online].
[2] The 3rd jilp championship branch prediction competition (cbp-3).

http://www.jilp.org/cbp2011, 2011. [Online].
[3] The 4th jilp championship branch prediction competition (cbp-4).

http://www.jilp.org/cbp2014, 2014. [Online].
[4] The 5th jilp championship branch prediction competition (cbp-5).

http://www.jilp.org/cbp2016, 2016. [Online].
[5] Agner Fog. “the microarchitecture of intel, amd and via cpus”. http:

//www.agner.org/optimize/microarchitecture.pdf, 2017. [Online].
[6] Bytecode Alliance. sightglass: a benchmark suite and tool to

compare different implementations of the same primitives. https:
//github.com/bytecodealliance/sightglass, 2019. [Online].

[7] Dan Gohman. WASI: The WebAssembly system interface. online:.
https://wasi.dev/, 2019. [Online].

[8] Google. https://github.com/google/safeside, 2019. [Online].
[9] Open Source Security Inc. the amd branch (mis)predictor: Just set

it and forget it! https://grsecurity.net/amd_branch_mispredictor_
just_set_it_and_forget_it, 2022. [Online].

[10] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. New branch
prediction vulnerabilities in openssl and necessary software coun-
termeasures. In Cryptography and Coding, pages 185–203, 2007.

[11] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the
power of simple branch prediction analysis. In Computer and
Communications Security (CCS), pages 312–320, 2007.

[12] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting
secret keys via branch prediction. In RSA Conference, pages 225–242,
2007.

[13] Sam Ainsworth and Timothy M Jones. Muontrap: Preventing
cross-domain spectre-like attacks by capturing speculative state. In
International Symposium on Computer Architecture (ISCA), pages
132–144, 2020.

[14] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu
Teodorescu. Specshield: Shielding speculative data from microarchi-
tectural covert channels. In Parallel Architectures and Compilation
Techniques (PACT), pages 151–164, 2019.

[15] Gilles Barthe, Tamara Rezk, and Martijn Warnier. Preventing timing
leaks through transactional branching instructions. Electronic Notes
in Theoretical Computer Science, 153(2):33–55, 2006.

[16] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandt-
ner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil
Kurmus. Smotherspectre: exploiting speculative execution through
port contention. In Computer and Communications Security (CCS),
pages 785–800, 2019.

[17] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A systematic evaluation of transient execution
attacks and defenses. In USENIX Security Symposium (USENIX
Security), pages 249–266, 2019.

[18] Canella, Claudio and Genkin, Daniel and Giner, Lukas and Gruss,
Daniel and Lipp, Moritz and Minkin, Marina and Moghimi, Daniel
and Piessens, Frank and Schwarz, Michael and Sunar, Berk and Van
Bulck, Jo, and Yarom, Yuval. Fallout: Leaking data on meltdown-
resistant cpus. In Computer and Communications Security (CCS),
2019.

[19] Chandler Carruth. RFC: Speculative load hardening (a Spectre
variant #1 mitigation). https://lists.llvm.org/pipermail/llvm-dev/
2018-March/122085.html, 2018. [Online].

[20] Sunjay Cauligi, Gary Soeller, Fraser Brown, Brian Johannesmeyer,
Yunlu Huang, Ranjit Jhala, and Deian Stefan. Fact: A flexible,
constant-time programming language. In Cybersecurity Development
(SecDev), pages 69–76, 2017.

[21] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang
Lin, and Ten H Lai. Sgxpectre: Stealing intel secrets from sgx
enclaves via speculative execution. In European Symposium on
Security and Privacy (EuroS&P), pages 142–157, 2019.

[22] Md Hafizul Islam Chowdhuryy, Hang Liu, and Fan Yao. Branchspec:
Information leakage attacks exploiting speculative branch instruc-
tion executions. In International Conference on Computer Design
(ICCD), pages 529–536. IEEE, 2020.

[23] Jonathan Corbet. Taming STIBP. https://lwn.net/Articles/773118/,
2018. [Online].

[24] Jan de Mooij. Enable index masking by default. https://
bugzilla.mozilla.org/show_bug.cgi?id=1435266, 2018. [Online].

[25] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
Covert channels through branch predictors: a feasibility study. In
Hardware and Architectural Support for Security and Privacy (HASP),
pages 1–8, 2015.

[26] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
Jump over aslr: Attacking branch predictors to bypass aslr. In
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 1–13, 2016.

[27] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
Understanding and mitigating covert channels through branch
predictors. ACM Transactions on Architecture and Code Optimization
(TACO), 13(1):1–23, 2016.

[28] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE,
and Dmitry Ponomarev. Branchscope: A new side-channel attack
on directional branch predictor. In International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2018.

[29] Jacob Fustos, Farzad Farshchi, and Heechul Yun. Spectreguard: An
efficient data-centric defense mechanism against spectre attacks. In
Design Automation Conference (DAC), pages 1–6, 2019.

[30] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+ flush: a fast and stealthy cache attack. In
International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA), pages 279–299, 2016.

[31] Marco Guarnieri, Boris Köpf, José F Morales, Jan Reineke, and
Andrés Sánchez. Spectector: Principled detection of speculative
information flows. In IEEE Symposium on Security and Privacy (SP),
pages 1–19, 2020.

[32] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. Hardware-
software contracts for secure speculation. In IEEE Symposium on
Security and Privacy (SP), pages 1868–1883, 2021.

[33] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and
JF Bastien. Bringing the web up to speed with WebAssembly. In
Programming Language Design and Implementation (PLDI). ACM,
2017.

[34] John L Henning. Spec cpu2006 benchmark descriptions. ACM
SIGARCH Computer Architecture News, 34(4):1–17, 2006.

[35] Jann Horn et al. Reading privileged memory with a side-channel.
Project Zero, 39, 2018.

[36] Casen Hunger, Mikhail Kazdagli, Ankit Rawat, Alex Dimakis, Sriram
Vishwanath, and Mohit Tiwari. Understanding contention-based
channels and using them for defense. In International Symposium
on High Performance Computer Architecture (HPCA), pages 639–650,
2015.

[37] IBM. Power9 processor user’s manual. Technical report, IBM, 2019.

[38] Intel. Intel analysis of speculative execution side channels.
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/
Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf, 2018.
[Online].

1217

[39] Intel. Single thread indirect branch predictors.
https://www.intel.com/content/www/us/en/developer/articles/
technical/software-security-guidance/technical-documentation/
single-thread-indirect-branch-predictors.html, 2018. [Online].

[40] Intel® C++ Compiler 19.1 Developer Guide and Reference, 2020.
[Online].

[41] Intel Corporation. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual, August 2011.

[42] Daniel A Jiménez. Fast path-based neural branch prediction. In
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 243–252, 2003.

[43] Daniel A Jiménez. Piecewise linear branch prediction. In Interna-
tional Symposium on Computer Architecture (ISCA), pages 382–393,
2005.

[44] Daniel A Jiménez and Calvin Lin. Dynamic branch prediction
with perceptrons. In International Symposium on High Performance
Computer Architecture (HPCA), pages 197–206, 2001.

[45] Evan Johnson, David Thien, Yousef Alhessi, Shravan Narayan, Fraser
Brown, Sorin Lerner, Tyler McMullen, Stefan Savage, and Deian
Stefan. Доверяй, но проверяй: Sfi safety for native-compiled wasm.
In Network and Distributed Systems Security (NDSS) Symposium,
2021.

[46] Vladimir Kiriansky and Carl Waldspurger. Speculative buffer
overflows: Attacks and defenses. arXiv preprint arXiv:1807.03757,
2018.

[47] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. Spectre attacks: Exploiting speculative execution.
In IEEE Symposium on Security and Privacy (SP), pages 1–19, 2019.

[48] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre returns! speculation attacks
using the return stack buffer. In USENIX Security Symposium
(USENIX Security), 2018.

[49] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled N
Khasawneh, Chengyu Song, and Nael Abu-Ghazaleh. Speccfi:
Mitigating spectre attacks using cfi informed speculation. In IEEE
Symposium on Security and Privacy (SP), pages 39–53, 2020.

[50] Lee and Smith. Branch prediction strategies and branch target
buffer design. Computer, 17(1):6–22, 1984.

[51] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon
Kim, and Marcus Peinado. Inferring fine-grained control flow
inside {SGX} enclaves with branch shadowing. In USENIX Security
Symposium (USENIX Security), pages 557–574, 2017.

[52] Haifeng Li, Tianyue Lu, Yuhang Liu, and Mingyu Chen. Make
page coloring more efficient on slice-based three-level cache. In
2019 IEEE 25th International Conference on Parallel and Distributed
Systems (ICPADS), pages 310–317. IEEE, 2019.

[53] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng.
Conditional speculation: An effective approach to safeguard out-of-
order execution against spectre attacks. In International Symposium
on High Performance Computer Architecture (HPCA), pages 264–276,
2019.

[54] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher,
Daniel Genkin, et al. Meltdown: Reading kernel memory from user
space. In USENIX Security Symposium (USENIX Security), pages
973–990, 2018.

[55] Scott McFarling. Combining branch predictors. Technical report,
Citeseer, 1993.

[56] Larry W McVoy, Carl Staelin, et al. lmbench: Portable tools for
performance analysis. In USENIX annual technical conference, pages
279–294. San Diego, CA, USA, 1996.

[57] Pierre Michaud. A ppm-like, tag-based branch predictor. JILP-
Championship Branch Prediction, 7:10, 2005.

[58] Microsoft. More Spectre mitigations in MSVC.
https://devblogs.microsoft.com/cppblog/more-spectre-mitigations-
in-msvc/, 2020.

[59] Milena Milenkovic, Aleksandar Milenkovic, and Jeffrey Kulick.
Demystifying intel branch predictors. In Workshop on Duplicating,
Deconstructing and Debunking, 2002.

[60] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan,
and Edward Gan. Rocksalt: better, faster, stronger sfi for the x86. In
Proceedings of the 33rd ACM SIGPLAN conference on Programming
Language Design and Implementation, pages 395–404, 2012.

[61] Ravi Nair. Dynamic path-based branch correlation. In IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 15–23,
1995.

[62] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay
Cauligi, Evan Johnson, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi
Sahita, Hovav Shacham, Dean Tullsen, et al. Swivel: Hardening
{WebAssembly} against spectre. In USENIX Security Symposium
(USENIX Security), pages 1433–1450, 2021.

[63] Shravan Narayan, Tal Garfinkel, Mohammadkazem Taram, Joey
Rudek, Daniel Moghimi, Evan Johnson, Chris Fallin, Anjo Vahldiek-
Oberwagner, Michael LeMay, Ravi Sahita, Dean Tullsen, and Deian
Stefan. Going beyond the limits of sfi: Flexible and secure hardware-
assisted in-process isolation with hfi. In International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2023.

[64] Khang T Nguyen. Introduction to cache allocation
technology in the intel® xeon® processor e5 v4 family.
https://www.intel.com/content/www/us/en/developer/articles/
technical/introduction-to-cache-allocation-technology.html, 2016.
[Online].

[65] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silberstein,
and Christof Fetzer. You shall not bypass: Employing data dependen-
cies to prevent bounds check bypass. arXiv preprint arXiv:1805.08506,
2018.

[66] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof
Fetzer. {SpecFuzz}: Bringing spectre-type vulnerabilities to the
surface. In USENIX Security Symposium (USENIX Security), pages
1481–1498, 2020.

[67] Shien-Tai Pan, Kimming So, and Joseph T Rahmeh. Improving the
accuracy of dynamic branch prediction using branch correlation. In
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 76–84, 1992.

[68] Passmark. Amd vs intel market share. https:
//www.cpubenchmark.net/market_share.html, 2022. [Online].

[69] Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jordan,
Dean M. Tullsen, and Ashish Venkat. I see dead µops: Leaking
secrets via intel/amd micro-op caches. In International Symposium
on Computer Architecture (ISCA), June 2021.

[70] Gururaj Saileshwar and Moinuddin K Qureshi. Cleanupspec: An"
undo" approach to safe speculation. In IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 73–86, 2019.

[71] Michael Schwarz, Robert Schilling, Florian Kargl, Moritz Lipp,
Claudio Canella, and Daniel Gruss. Context: Leakage-free transient
execution. arXiv preprint arXiv:1905.09100, 2019.

[72] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and
Daniel Gruss. Netspectre: Read arbitrary memory over network.
In European Symposium on Research in Computer Security, pages
279–299. Springer, 2019.

[73] Andre Seznec. The o-gehl branch predictor. JILP-Championship
Branch Prediction, 2004.

[74] André Seznec. Analysis of the o-geometric history length branch
predictor. In International Symposium on Computer Architecture
(ISCA), pages 394–405, 2005.

[75] André Seznec. A 256 kbits l-tage branch predictor. JILP-
Championship Branch Prediction, 9:1–6, 2007.

1218

[76] André Seznec. A new case for the tage branch predictor. In
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 117–127, 2011.

[77] André Seznec. Tage-sc-l branch predictors. In JILP-Championship
Branch Prediction, 2014.

[78] André Seznec. Tage-sc-l branch predictors again. In JILP-
Championship Branch Prediction, 2016.

[79] André Seznec, Stephen Felix, Venkata Krishnan, and Yiannakis
Sazeides. Design tradeoffs for the alpha ev8 conditional branch
predictor. International Symposium on Computer Architecture (ISCA),
pages 295–306, 2002.

[80] André Seznec and Pierre Michaud. A case for (partially) tagged
geometric history length branch prediction. JILP-Championship
Branch Prediction, 8:23, 2006.

[81] Zhuojia Shen, Jie Zhou, Divya Ojha, and John Criswell. Restricting
control flow during speculative execution with venkman. arXiv
preprint arXiv:1903.10651, 2019.

[82] Navin Shenoy. Latest intel security news: Updated firmware
available for 6th, 7th and 8th generation intel core processors, intel
xeon scalable processors and more. https://newsroom.intel.com/
news/latest-intel-security-news-updated-firmware-available/, 2018.
[Online].

[83] James E. Smith. A study of branch prediction strategies. In
International Symposium on Computer Architecture (ISCA), page
135–148, 1981.

[84] Spectre side channels. https://www.kernel.org/doc/html/latest/
admin-guide/hw-vuln/spectre.html, 2019. [Online].

[85] Mohammadkazem Taram, Xida Ren, Ashish Venkat, and Dean
Tullsen. Secsmt: Securing SMT processors against contention-based
covert channels. In USENIX Security Symposium (USENIX Security),
2022.

[86] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. Context-
sensitive fencing: Securing speculative execution via microcode
customization. In International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages
395–410, 2019.

[87] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache
attacks on AES, and countermeasures. Journal of Cryptology,
23(1):37–71, 2010.

[88] Dean M Tullsen, Susan J Eggers, and Henry M Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In International
Symposium on Computer Architecture (ISCA), pages 392–403, 1995.

[89] Paul Turner. Retpoline: a software construct for preventing branch-
target-injection. https://support.google.com/faqs/answer/7625886,
2018. [Online].

[90] Vladimir Uzelac. Microbenchmarks and mechanisms for reverse
engineering of modern branch predictor units. A Masters Thesis
submitted to the University of Alabama, 2008.

[91] Vladimir Uzelac and Aleksandar Milenkovic. Experiment flows
and microbenchmarks for reverse engineering of branch predictor
structures. In International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 207–217, 2009.

[92] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp,
Marina Minkin, Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel
Gruss, and Frank Piessens. LVI: Hijacking Transient Execution
through Microarchitectural Load Value Injection. In IEEE Symposium
on Security and Privacy (SP), 2020.

[93] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue in-flight data load. In IEEE Symposium on
Security and Privacy (SP), 2019.

[94] Marco Vassena, Craig Disselkoen, Klaus V Gleissenthall, Sunjay
Cauilgi, Rami Gökhan Kici, Ranjit Jhala, Dean Tullsen, and Deian
Stefan. Automatically eliminating speculative leaks from crypto-
graphic code with Blade. In Principles of Programming Languages
(POPL), 2021.

[95] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F Wenisch, and
Baris Kasikci. Nda: Preventing speculative execution attacks at their
source. In IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 572–586, 2019.

[96] You Wu and Xuehai Qian. A case for reversible coherence protocol.
arXiv preprint arXiv:2006.16535, 2020.

[97] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison,
Christopher Fletcher, and Josep Torrellas. Invisispec: Making
speculative execution invisible in the cache hierarchy. In IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 428–
441, 2018.

[98] Yuval Yarom and Katrina Falkner. {FLUSH+ RELOAD}: A high
resolution, low noise, l3 cache {Side-Channel} attack. In USENIX
Security Symposium (USENIX Security), pages 719–732, 2014.

[99] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. Coloris: a
dynamic cache partitioning system using page coloring. In 2014
23rd International Conference on Parallel Architecture and Compilation
Techniques (PACT), pages 381–392. IEEE, 2014.

[100] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert
Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas
Fullagar. Native client: A sandbox for portable, untrusted x86 native
code. Communications of the ACM, 53(1):91–99, 2010.

[101] Tse-Yu Yeh and Yale N Patt. Two-level adaptive training branch pre-
diction. In IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 51–61, 1991.

[102] Tse-Yu Yeh and Yale N Patt. Alternative implementations of
two-level adaptive branch prediction. ACM SIGARCH Computer
Architecture News, 20(2):124–134, 1992.

[103] Jiyong Yu, Namrata Mantri, Josep Torrellas, Adam Morrison, and
Christopher W Fletcher. Speculative data-oblivious execution: Mo-
bilizing safe prediction for safe and efficient speculative execution.
In International Symposium on Computer Architecture (ISCA), pages
707–720, 2020.

[104] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep
Torrellas, and Christopher W Fletcher. Speculative taint tracking
(stt) a comprehensive protection for speculatively accessed data. In
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 954–968, 2019.

[105] Charles Zhang. Mars: A 64-core armv8 processor. In Hot Chips,
pages 1–23, 2015.

[106] Tao Zhang, Kenneth Koltermann, and Dmitry Evtyushkin. Exploring
branch predictors for constructing transient execution trojans. In
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 667–682, 2020.

[107] Lutan Zhao, Peinan Li, Rui Hou, Michael C Huang, Jiazhen Li,
Lixin Zhang, Xuehai Qian, and Dan Meng. A lightweight isolation
mechanism for secure branch predictors. In Design Automation
Conference (DAC), pages 1267–1272, 2021.

[108] Zirui Neil Zhao, Houxiang Ji, Mengjia Yan, Jiyong Yu, Christopher W
Fletcher, Adam Morrison, Darko Marinov, and Josep Torrellas. Specu-
lation invariance (invarspec): Faster safe execution through program
analysis. In IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 1138–1152, 2020.

Appendix A.
Additional Results, and Discussion
A.1. PHR Update Policy: Earlier Intel Processors
Figure 14 shows the PHR update policy for the Haswell and
Ivy Bridge microarchitectures. Both microarchitectures have
the same PHR update policy, and PC[4] directly provides
one bit of the index to PHTs; thus it partitions the tables.

1219

T0: Bit number 0 in target address B1: Bit number 1 in branch address ⨁: XOR operation
B14⨁T4B19 B17B18 B16 B11⨁T3 B10⨁T2 B7⨁T1B13 B9B12 B8 B5 B4 B13⨁T5 B6⨁T0

Figure 14: Footprint in Haswell and Ivy Bridge.

A.2. Branch Instructions: Influencing the CBP
As discussed in section 3.3, the global history register (PHR)
can be influenced by unconditional branch instructions
despite the fact that they do not use predictions from the
CBP. Therefore, for completeness, we examine all possible
instructions that could influence the state of CBP, such as
updating the PHR and PHT entries. Our results show that
all conditional branch instructions and loop instructions
update the PHR (when taken) and use the predictions from
the CBP. Additionally, all unconditional branches (including
indirect branches) update the PHR but do not affect the
PHTs. Table 5 shows the list of all possible instructions
that could influence the PHR or PHT entries.

Table 5: Instructions influencing the CBP elements
Affected structure Instructions

Both PHR and PHTs jz/jnz, je/jne, js/jns, jo/jno, jpe/jpo, jp/jnp, jb/jnb, jae/jnae, jc/jnc, jbe/jnbe
ja/jna, jl/jnl, jge/jnge, jle/jnle, jg/jng, loop, loope/loopne, loopz/loopnz, jcxz/jecxz

Only PHR jmp (relative/absolute/register/memory), call/ret

A.3. Base Predictor
As discussed in Section 2.2, state-of-the-art directional
branch predictors in the literature [80], [77], as shown
in Figure 1, employ a base predictor (Table0) alongside a
set of tagged components (PHTs). The base predictor is
a bimodal-like predictor [55] indexed directly by branch
address (PC) to record the local history of each branch. A
base predictor is crucial to the performance of the CBP
in modern processors because: (1) In case of no matching
tagged component, CBP uses the prediction provided by
base predictor, and (2) Base predictor performs better than
the PHTs when a branch is strongly biased in a particular
direction since its warm-up time is short. Also, Evtyushkin
et al. [28] showed that the CBP of Haswell and Sandy Bridge
microarchitectures features a base predictor in charge of
providing a basic prediction. In order to recover how many,
and which, bits of branch address are used to index base
predictor, we coerce the CBP to provide the prediction
using base predictor instead of PHTs. We do this using an
experiment shown in Listing 8.
▶ We try to alias two test branches in which one of them

is always taken and the other one is not-taken.
▶ Prior to each test branch, we clear the PHR (PHR =

0...0) to ensure that the CBP can only access a set of
entries within PHTs indexed by zero. Beforehand, we
fill those PHT entries with some correlating branches
that will cause no matching tagged component while
predicting directions of test branches.

Therefore, the CBP provides the prediction for test branches
using only the base predictor, allowing us to study its index.
By aligning addresses of test branches we try to alias them
in the base predictor, thus a single entry provides prediction
for both of them. Since the first test branch is always taken
and the second one is always not-taken, aliasing will cause
mispredictions.

ac
ke

rm
an

n

ba
se

64
cty

pe

ed
25

51
9

fib
2
gim

li

he
ap

so
rt

ke
cc

ak

matr
ix

matr
ix2

mem
mov

e

mini
cs

v

ne
ste

dlo
op

ne
ste

dlo
op

2

ne
ste

dlo
op

3

ra
nd

om

ra
nd

om
2

ra
tel

im
it
sie

ve
str

ca
t

str
ca

t2
str

ch
r
str

len
str

tok

sw
itc

h

sw
itc

h2

xb
lab

la2
0

xc
ha

ch
a2

0

Geo
mea

n
0

1

2

3

4

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

O
ve

rh
ea

d

Swivel SFI (BTB, RSB, CBP) Swivel SFI (BTB, RSB) + Half&Half Swivel SFI (BTB, RSB)

Figure 15: Performance overhead of Half&Half
(Swivel) on Sightglass benchmarks.

for (i=0; i < NUM_TRIES; i++){
Fill_PHTS(idx=0); //Fill PHT entries
SET_PHR(0..0); //PHR = 0...0
align(alignment) //PC[alignment:0] = 0
if(TRUE); //Test Branch 1

SET_PHR(0..0); //PHR = 0...0
align(alignment) //PC[alignment:0] = 0
if(FALSE); //Test Branch 2

}

Listing 8: Microbenchmark pseudo-code for recovering
the index of the base predictor

Observation 7. We found that 13 lower bits of the
branch address (PC[12:0]) are used to index to the
base predictor.

A.4. Speedup of WebAssembly Spectre mitiga-
tions

We use the modified Swivel compiler to compile Wasm
versions of the Sightglass benchmarks. We compare the
performance of this defense with Swivel’s two baseline
defenses (called Swivel-SFI and Swivel-CET) and show the
results in Figure 15 for Sightglass benchmarks. For each
bar, the result is normalized to Swivel with no CBP defense,
but all other defenses active.

A.5. Partitioning the CBP across Kernel and User
programs

As discussed in Section 4.2, Half&Half can be used to
partition the CBP between userspace code and kernel
code. This prevents malicious users from leveraging out-of-
place Spectre-CBP attacks to learn information from kernel
code. In the case of arbitrary code, we must either use
trusted compilers, trusted binary translators, or verify the
binaries to ensure that all conditional branches follow the
partitioning policy. A number of prior works demonstrate
the potential for verifying binaries [45], [60], [100].

We measure the performance overhead of Half&Half,
with the LMbench [56] benchmark suite. We measure
performance overheads of LMBench when it is run isolated
from the kernel code, and show the results in Figure 16.
From the experiments, we see that using Half&Half to
isolate Kernel code from userspace code only adds an
overhead of 5.9%.

1220

2p
/16

k

8p
/16

k

16
p/1

6k

nu
ll c

all

for
k p

ro
c

sh
 pr

oc

op
en

/cl
os

e
sta

t
pip

e

AF U
nix TC

P

File
 R

er
ea

d

Mmap
 R

er
ea

d

Bco
py

 (li
bc

)

Mem
 R

ea
d

Mem
 W

rit
e

0%

2%

5%

8%

10%

E
xe

cu
tio

n
Ti

m
e

O
ve

rh
ea

d

Context Switch System Call Communication Bandwidth

Figure 16: Performance overhead of Half&Half while
isolating the LMbench from Kernel code.

A.6. Swivel Protections vs Half&Half Protections
In order to ensure our comparisons with Swivel performance
in Section 5.2 are fair, we need to confirm that the compared
solutions – specifically Swivel-SFI (PHT, BTB, RSB) vs.
Swivel-SFI (BTB, RSB) – provide the same protections. We
analyze those protections more deeply here.

According to the Swivel paper, either in-place or out-
of-place Spectre can be used by a malicious Wasm instance
"A" to:
1) breakout of it’s sandbox and directly access memory of

Wasm instance "B". (breakout attack)
2) poison the branch predictors so that Wasm instance "B"

self-exfiltrates it’s own sensitive data. (poisoning attack)
Breakout attacks in Swivel are protected using linear

blocks and the BTB flush which we leave unchanged in our
hybrid Swivel + Half&Half implementation.

Poisoning attacks in Swivel are protected with distinct
protections: PHT (eliminate direct branches), BTB (flush
BTB), and RSB (eliminate returns). In our hybrid Swivel
+ Half&Half, we only remove Swivel’s poisoning PHT
protections (i.e., direct branch elimination) in favour of
direct branch partitioning which will provide equivalent
protections. The table below clarifies our changes to Swivel,
and how each protects against the full permutation of
attacks.

Attack Swivel-SFI (PHT,BTB,RSB) Swivel-SFI (BTB, RSB) + Half&Half

Breakout PHT LB LB
Breakout BTB BTB flush + LB BTB flush + LB
Breakout RSB LB + separate control stack + no return inst. LB + separate control stack + no return inst.
Poisoning PHT no direct branch Half&Half direct branch partitioning
Poisoning BTB BTB flush BTB flush
Poisoning RSB separate control stack + no return inst. separate control stack + no return inst.

A.7. Half&Half Integration with OS Kernels
This section details the process by which the kernel can
successfully run an application compiled with Half&Half,
targeting SMT execution. Our integration scheme involves
the following steps:

First, during the OS Boot setup, each SMT core in
a physical core is assigned a unique domain A or B.
Depending on the microarchitecture, domain A may have
PC[4/5] = 0, while domain B may have PC[4/5] = 1. This
ensures that each core executes only one domain at a time.

When compiling an application, the Half&Half Compiler
should, by default, compile all branches with PC[4/5] = 0
and add a flag to all applications compiled with Half&Half.
It should be noted that handwritten assembly codes will
require modifications to ensure that all branches within
them have appropriate addresses.

When executing an application, the OS checks if it
supports Half&Half, and if so, associates the process with
one of the domains A or B. If the OS assigns the process
domain B, the elf loader offsets the code pages by 16/32
bytes during load.

We believe that this integration scheme only requires
minor changes to the existing OS components and will
enable the OS to utilize Half&Half’s isolation mechanisms
between user/kernel and SMT threads.

1221

